
Python for Physicists

Chapter 6. if Statements

if statements: control flow of a program based on conditions

Flow control is most easily
visualized with a flow chart

START

condition

END

if block

no

yes

if condition:
 code

Pseudocode:

Example
START

if x > 0

END

x is positive

no

yes

if x > 0:
 print(x,’is positive')

Python code:

if statements: control flow of a program based on conditions

The else block is executed
when the if condition is false

START

condition

else block

END

if block

no

yes

if condition:
 code
else:

 code

Pseudocode:

if statements: control flow of a program based on conditions

START

if x > 0

x is not positive

END

x is positive

no

yes

x = float(input("Enter a number: "))

if x > 0:
 print(temp,'is positive’)
else:
 print(temp,'is not positive')

Python code:

Example

if statements: control flow of a program based on conditions

An elif statement can evaluate a second
condition if the first condition is false.

START

condition
1

else block

END

if block

no

yes

if condition 1:
 code
elif condition 2:

 code
else:

 code

Pseudocode:

condition
2

elif blockyes

no

if statements: control flow of a program based on conditions

Comparison (i.e. relational) operators

 == Equality operator x == y True if x equal y
 != Not equal x != y True if x is not equal to y
 > Greater than x > y True if x is greater than y
 < Less than x < y True if x is less than y
 >= Greater than or equal to x >= y True if x is greater than or equal to y
 <= Less than or equal to x <= y True if x is less than or equal to y
 is same object (identity) a is b True if a and b are the same object
 (not just numerically equal)
 in membership a in b True if a is in b

operator meaning example

Boolean (logical) operators

 and x and y True if BOTH x and y are True
 or x or y True if EITHER x or y are True
 not not x True if x is False

operator example meaning

Result of Comparison and Boolean Operators is Boolean data type

x = 4 > 2

Examples

x will be a Boolean data type = True

y = 1 == 2 y will be a Boolean data type = False

Expression Boolean Result

A[0] > A[1] True

A[0] > A[1] and A[0] < A[3] True

A[0] > A[3] False

A[0] == A[2] True

30 in A True

not(A[0] < A[3]) False

A = [20, 10, 20, 30]

1. Draw a flow chart to categorize someone’s age. Use the following categories to print a
message. Hint: you can have as many elif statements as you like in an if statement.

Group Exercise

• kid: age < 11
• tween: 11 ≤ age < 13
• teen: 13 ≤ age < 20
• adult: 20 ≤ age

2. Write Python code to do the following:
• prompt user to enter an age
• print a message based on their age

Coding Patterns are commonly-used combinations of loops, if statements,
counters, etc. to achieve a particular result. We will discuss the following four
examples:

Coding Patterns

• Accumulator Pattern
• Update (or Replacement) Pattern
• Count Pattern
• Search Pattern

• The Accumulator Pattern consists of a loop and an
accumulator variable.

• On each iteration of the loop, the accumulator variable
“accumulates” or “gathers” information.

Accumulator Pattern

exit
loop?

initialize accumulator
variable

yes

update accumulator
variable

no

enter
loop

START

END

Uses:
• Summing
• Computing factorial
• Repeatedly extending a list with new elements
• Numerical integration

Accumulator Pattern

Example: Summing integers

N = 10 # N = upper limit of sum

total = 0 # total = accumulator = sum of integers
for i in range(1,N+1): # loop over integers 1 to N
 total = total + i # add i to the running total

print("sum of integers from 1 to",N,"is",total)

Python code:

• The Update/Replacement Pattern consists of a
loop and a variable to be updated/replaced.

• On each iteration of the loop, the variable is
replaced with new information when a condition
is met.

Update (or Replacement) Pattern

condition

initialize variable

yes

update/replace
variableno

enter
loop

START

END

Uses:
• Calculating min or max of an array
• Detecting events in an array, such as exceeding a

threshold exit
loop?

yes

no

Example: Finding maximum value in a list

vlist = [3, 7, 27, -2, 12] # define a list of numbers

max_v = vlist[0] # initialize max_value to first element in list

for v in vlist: # loop over numbers in the list
 if v > max_v: # check if the current number > max_val
 max_v = v # if true, update max_val to current number

print("max value = ", max_v) # print out the max value in the list

Update (or Replacement) Pattern

• This pattern is used to count occurances

• A counter variable is initialized to 0

• Loop over an array and increment the counter if
some condition is met.

Count Pattern

condition

initialize counter = 0

yes

increment counter
by 1no

enter
loop

START

END

Uses:
• Counting
• Creating histograms

exit
loop?

yes

no

Example: Find number of list elements with values >= threshold value

n_cats = [0,1,3,4,10] # number of cats owned

count = 0 # initialize counter
threshold = 3 # threshold for detection

for cats in n_cats: # loop over numbers in the list
 if cats >= threshold: # check if value > threshold
 count += 1 # if true, increment counter

print(count," people in the list own at least",threshold,"cats")

Update (or Replacement) Pattern

• This pattern searches for a value or pattern
in a list.

• If the value is found, a flag is set to true and
the loop is exited to save computer resources

Search Pattern

condition

initialize found flag = False

yes

exit loop
set flag = True

no

enter
loop

START

END

Uses:
• Counting
• Creating histograms

exit
loop?

yes

no

1. Draw a flow chart to sketch out the general
structure of your program

Group Exercise

2. Write Python code to generate random 5-card
hands. Estimate the likelihood of getting a given
poker hand.

Imagine writing a program to calculate the likelihood of getting different poker hands assuming
you are dealt 5 random cards from a 52-card deck (no jokers).

Hint. For each card in your hand:
• draw a random number for the card’s face value
• draw a random number for the card’s suite
• How might you prevent duplicate cards (which are

not possible using a single deck)?

